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Abstract

We propose a new technique to implement solid wall boundary conditions for steady two-dimensional Euler equa-
tions for problems in curved geometries. The technique is to be used with high-order methods on unstructured,
straight-sided element meshes. By modeling flow around a physical rather than computational geometry, significant
improvement in quality of the solution is achieved. The technique does not require a complex reconstruction and is easy
to implement. Examples are presented to demonstrate validity of the new approach.
© 2005 Elsevier Inc. All rights reserved.

1. Introduction

Correct treatment of boundary conditions is crucial for developing accurate numerical schemes. Difficul-
ties can arise when the numerical boundary does not coincide with the physical boundary. Large errors may
arise in the boundary layer and pollute the solution inside the domain. This is especially important for higher-
order methods, where errors due to geometrical approximation may dominate the discretization error, ren-
dering the use of a higher-order scheme useless [5,18]. In this paper, we focus on implementation of solid
wall boundary conditions for two-dimensional compressible inviscid Euler equations in curved geometries.
Though our results are applicable to any higher-order scheme, we are primary interested in the discontin-
uous Galerkin method (DGM). It has been shown [4,5] that the DGM for flow problems is highly sensitive
to the accuracy of the boundary representation. Our goal is to improve the accuracy of the boundary
conditions without resorting to a full fledged higher-order representation of the geometry.
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The most popular way to impose boundary conditions at solid walls for flow problems is the reflection
technique, where an extra row (rows) of ghost cells is added behind the wall. All interior solution compo-
nents are reflected symmetrically to ghost states except for the normal velocity which is negated; then a Rie-
mann problem is solved on the boundary. Due to the symmetry of the reflection, only pressure contributes
to the boundary flux. As a modification of the method, pressure obtained from interior values might be
used directly in computation of the boundary flux eliminating the extra work required to construct ghost
cells. With the DGM, this results in a slightly less accurate solution. The method works well when a wall is
straight and leads to large errors when it is not. The inaccuracy of the approach when applied to curved
geometries was demonstrated by Moretti [12] in the late 1960s. The normal derivative of pressure at the
boundary is zero for a numerical solution and is far from it for the exact one. Thus, the reflecting boundary
conditions are physically wrong for a curved geometry.

In general, more accurate techniques take into account the curvature of the solid wall instead of treating
it locally as a straight line. Rizzi [14] incorporates curvature into boundary conditions by streamline differ-
entiating the normal velocity equation, where the normal is taken relative to the physical geometry. Pres-
sure at the boundary points is extrapolated from interior values of density, velocity, pressure, and the rate
of change of the normal vector. More recent work of Dadone [8] extends this result. Pressure at the ghost
cells is computed by Rizzi’s formula and then used to obtain density and tangential velocity from the con-
stant entropy and total-enthalpy vortex model. The normal component of velocity is computed according
to the reflecting technique. Two rows of ghost cells are required for the second-order finite volume method.
The solutions obtained with this approximation are more accurate at the expense of loss of conservation.
These boundary conditions are applicable only to non-transient problems.

Bassi and Rebay [4,5] showed that DGM solutions are more sensitive to the error arising at curved
boundaries than those obtained with finite volume methods of the same (theoretical) order of accuracy.
Moreover, the solution may become less accurate as the order of approximation increases (Section 3).
This is especially unfortunate since the DGM is considered an extension of the finite volume method to
higher orders. As such, it can be computationally very efficient in regions where the solution is smooth.
For example, to capture the structure of the solution near the leading edge of an airfoil. Bassi and Re-
bay [4,5] concluded that a high-order approximation of the physical geometry is a must for obtaining a
meaningful solution. This is the point of view currently accepted by the DGM community [6]. Higher-
order geometrical approximation is achieved by using mesh clements with one or more curved sides,
usually described by polynomials. It has been shown numerically [5] that with the reflecting boundary
conditions the order of the polynomials approximating the geometry must be at least equal to the order
of the polynomial basis but not less than two in order to achieve the optimal rate of convergence. This
is similar to the finite element method for elliptic equations where errors due to discretization of the
domain arise in the boundary layer and may dominate the discretization error of the numerical scheme
there. Choosing the degree of the polynomial approximating the boundary equal to the order of the
basis functions is proven to be sufficient for obtaining the optimal rate of convergence in the energy
norm [18].

However, curved element meshes are associated with extra computational expenses. First, curved ele-
ments need to be mapped onto the computational straight-sided element by a nonlinear mapping. To ac-
count for the non-constant Jacobian, a higher-order integration scheme must be used to compute volume
and boundary integrals. Additionally, basis functions must be created and stored for each curved element
when an orthogonal basis is used. The quadrature-free form of the DGM avoids a nonlinear mapping by
employing canonical elements with curved sides [3]. When an adaptive scheme with p-refinement is used,
either the geometrical order must be high enough from the beginning or a new, higher-order mesh element
must be created every time a boundary element is marked for p-refinement. However, the biggest difficulty
is to discretize the domain with curved elements. It is often unrealistic to obtain curved-element meshes
for complicated geometries, especially in three dimensions. Moreover, most of the non-commercial
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mesh-generating software currently produces only linear elements. In the absence of readily available prod-
ucts, coding higher-order curved elements on one’s own may prove to be a tedious task.

This situation motivated us to seek a simpler technique. We start with an unstructured straight-sided
element mesh. Since we are modeling compressible inviscid flow around an object, we assume that the
streamlines follow the contours of the body. We require the numerical velocity at every boundary inte-
gration point to coincide with the streamline direction near the body surface, i.e., to be orthogonal to the
“true” geometrical boundary rather than to the computational boundary. Instead of being tangential to
the edge of the element, the flow “leaves” the domain at an integration point and “‘returns” at the sym-
metric integration point (we use Gauss—Legendre quadrature where integration points are symmetric
about the center of an edge). It is reminiscent of the transpiration boundary conditions [13], which
are used to simulate a flow around a perturbed geometry when remeshing is considered impractical. Cur-
vature of a solid boundary is either obtained from the geometrical description of the object or approx-
imated locally using data from neighboring elements. Setting up a ghost state, we reflect the velocity with
respect to the “true” normal and map the other components of the solution symmetrically. However, the
normal used in computing the boundary flux is the usual normal to the computational element, constant
along the edge.

While our curvature boundary conditions (CBC) are more accurate than the reflecting boundary con-
ditions (RBC) as measured by errors in solution components and quantities of interest, they are not
conservative. Non-conservative schemes are usually treated with caution because they may result in
an incorrect shock position and strength. However, such schemes have been successfully used in some
situations. In recent years, work has appeared where authors advocate loss of conservation as a lesser
evil. For example, by applying a non-conservative scheme near the interface of two fluids, Karni [11]
eliminates large spurious oscillations. The dramatic improvement in the quality of the solution out-
weighs the (very small) loss of conservation. As we have already mentioned, the boundary conditions
of Dadone [8] for the finite volume method are also non-conservative. As it is the case with [11], the
resulting scheme is conservative except for boundary elements, i.c., the loss of conservation occurs in a
lower dimension. The loss of mass in our experiments is almost negligible (the worst is 0.0004% for a
round body and a very coarse mesh). The non-penetration boundary conditions are satisfied in the limit
as the total mass loss converges to zero under /- and p-refinement. On the other side, the RBC do not
result in a numerical scheme properly modeling the exact solution on a straight-sided element mesh. As
we show on an example of a flow around a circular cylinder (Section 3), the reflecting technique results
in unsteady flow with vortices attached to the back of a cylinder when the exact solution is a steady
irrotational flow. No reasonable mesh refinement eliminates the wake, and p-refinement actually de-
creases the quality of the solution. This makes the curvature boundary conditions preferential in our
view.

The rest of the paper is organized as follows. Section 2 briefly describes the essential features of the
DGM. For more detail see [7] and references therein. The reflecting boundary conditions are discussed
in Section 3. The new curvature boundary conditions and their numerical implementation are introduced
in Section 4. Section 5 is devoted to numerical experiments. We show that the errors in solutions obtained
with the CBC are close to those obtained with exact boundary conditions (Example 5.1) or comparable to
those obtained on curved high-order meshes (Example 5.2) and exhibit the theoretical rate of convergence.
We find that the global aerodynamic constants for external flows are similar to described in the literature
(Example 5.3). Conclusions are in Section 6.

2. Discontinuous Galerkin formulation

We consider the two-dimensional Euler equations
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on a bounded domain Q with appropriate well-posed boundary data prescribed on 0Q. As is custom-
ary, p is the density of the fluid, ¥ and v are components of the velocity vector ¥, P is the pressure,
and FE is the total energy. We assume the fluid to be an ideal polytropic gas satisfying the equation of
state

P=(y— 1)(E—p”25”2>, (1b)

where y is the adiabatic exponent, which was set to 1.4 for the numerical experiments.

We use the discontinuous Galerkin method in the formulation originally proposed by Cockburn and
Shu. Here, we provide a brief synopsis of the numerical scheme; see [7] and references therein for a detailed
analysis.

In order to describe the method, we write (1a) as a general conservation law

ou+divFu)=0, xeQ, >0, (2a)
u=u’, r=0. (2b)

We divide the problem domain Q into a collection of non-overlapping elements
N
a=Je. (3)
=1

Then, we construct a Galerkin problem on element Q; by multiplying (2a) by a test function v € Lz(Qj), inte-
grating the result on €, and using the Divergence Theorem to obtain

/ vo,u ds+/
Q 09,

J J

vF(u) - 7i dt — /vgradv-F(u) ds=0 Wve (LX), (4)

Q;

where 7 is the normal vector to 0€;. The solution u is approximated by a vector function U; = (U, 1, U »,
U,-,:;, (]j~4)T, where

Np

Uj,k = Zci,k,j(pj; k= 1;25 3545 (5)

i=1

in a finite-dimensional subspace of the solution space. The basis {qol.}f;”l is chosen to be orthonormal in
LZ(Q_,») [10], which will produce a multiple of the identity for the mass matrix on Q.

Due to the discontinuous nature of the numerical solution, the normal flux F, = F(u) - #, is not defined
on 0Q,. The usual strategy is to define it in terms of a numerical flux F,(U;, Uy) that depends on the solution
U; on ©; and Uy on the neighboring element €, sharing the portion of the boundary 92, common to both
elements. In our experiments, we used the Roe numerical flux [15]. Finally, the L* volume and surface inner
products in (4) are computed using 2p and 2p + 1 order accurate Gauss quadratures [10], respectively,
where p is the order of the orthonormal basis. The resulting system of ODEs can be solved element-wise
when an explicit numerical scheme is used. We use an explicit total variation bounded Runge-Kutta scheme
of an appropriate order [7].
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3. Reflecting boundary conditions

The reflecting boundary conditions state that no flow penetrates a solid wall, i.e., the normal velocity at
the wall is zero. Depending on the numerical scheme, a ghost state or cell is created on the part of the
numerical boundary 0Q% corresponding to the solid wall. With the DGM, a ghost state is created at every
integration point on 0Q", where all components of the ghost solution are set equal to the corresponding
interior values at the same point except for the normal velocity, which is negated. Then, the interior and
ghost states are passed to a Riemann solver. Due to the symmetry of the reflection, the solution to the
Riemann problem at integration point x; € 0Q" satisfies [17]

B(x,) - = 0. 6)

This approach works well for straight-sided bodies. However, results are inferior when a physical geom-
etry is more complex. As an example, we consider a Mach 0.38 flow around a circular cylinder on a 128 x 32
O-grid mesh. A detailed description of the problem is given in Example 5.2. The computations were
initiated with the free stream values. After decreasing three orders of magnitude to the 1072-10 range,
residuals given by (20) oscillated in this range and failed to converge further. Computations were stopped
after no improvement was observed for a number of time steps. Mach isolines are presented in Fig. 1, left,
for p=1,2,3 with an increment AM = 0.038. Plotting was performed using data from inside of mesh
elements. Since the numerical solutions are discontinuous across interelement boundaries, the isolines

\ P

Fig. 1. Mach isolines (left) and density at the top of the cylinder (right) with reflecting boundary conditions. p = 1,2, 3, from top to
bottom. A wake is formed at the rear; the solution does not achieve a steady symmetric irrotational form.
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Fig. 2. Velocity field near the outflow part of a cylinder. p = 3, reflecting boundary conditions.

appear as broken lines where the solution changes rapidly from an element to its neighbor. The quality of
the numerical solutions is visibly poor. They do not appear to be good approximations to the exact solu-
tion, which is steady, smooth, subcritical and symmetric, with streamlines following contours of the body
[2]. The numerical solutions, however, are unsteady and may become transonic with higher (p = 2, 3) orders
of approximation. Instead of “wetting” the surface, the flow separates from the back of the cylinder form-
ing a wake. A close look at the velocity plot in Fig. 2 reveals two vortices at the back side of the cylinder.
Remarkably, the quality of solutions deteriorate as the order of approximation increases: the solutions
become less symmetric and the wake increases.

The likely explanation is that by increasing the order of approximation, we obtain a more accurate solu-
tion to a wrong problem: flow around a polygon. Rarefaction waves are formed at the vertices of the poly-
gon [2]. These are better resolved with higher p. Density plots near the top of the cylinder (with the
background mesh) in Fig. 1, right, demonstrate concentration of the error near vertices. Isolines take a
wave-like shape instead of a smooth curve. This becomes increasingly so and affects solution in further
parts of the domain as p increases.

4. Curvature boundary conditions

Meshing a non-polygonal shaped domain necessarily introduces an error. As we have seen, the DGM is
highly sensitive to the error due to approximation of a curved geometry by a straight-sided element mesh.
This error may dominate the discretization error of the scheme and lead to a wrong solution. We seek to
impose boundary conditions which would take this into consideration and model internal or external flow
more accurately.

We start by observing that the “‘no flow through a wall” rule refers to the physical boundary. Thus, (6)
does not model the non-penetration boundary conditions properly when a computational geometry does
not coincide exactly with the physical one. Imposing no flow through the physical boundary in this case
means allowing some flow through the computational boundary. Modeling compressible inviscid flow,
we assume that streamlines follow the contours of an object. This is equivalent to requiring the velocity
vector on the surface to be orthogonal to the normal to the surface. We assume this to be true in a small
vicinity to the surface and impose the following condition at every integration point:

B(x) N(x) =0, xe€0Q, (7)
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where N (x) is the unit normal to the physical geometry at point x. Fig. 3 illustrates (7) for element Q; adja-
cent to the solid boundary.

In practice, an analytical description of the surface is usually not available. Thus, in order to evaluate the
boundary integral in (4) numerically, N (x) needs to be approximated at the integration points from the
available data. In our computations, we assumed that the only available information is the mesh itself.
We approximated the physical geometry by an arc of the circle passing through the vertices of 0Q2}. The
radius of the circle is taken to be the average of the radii of two circles passing though three pomts two
vertices of 02" and the vertex lying on the solid boundary 1mmed1ately to the left or right of 0Q7. Using
the assumptlon that (7) is satisfied in close vicinity of the wall, Natx;,i=12,...,ng, is computed as the
unit normal to the circle passing through x; and the symmetric Gauss—Legendre point XG _ ; with the center
at the same point as the circle approximating the boundary. Only when the number of integration points is
odd does N at the center of 0Q} coincide with the normal to the edge of the straight-sided element. The
process is illustrated in Fig. 4 for p = 4 approximation that requires 9th-order accurate numerical integra-
tion which we perform by the 5-point Gauss—Legendre rule. Possible sharp corners of the physical object
are dealt with by computing the dot product of the normal to the straight-sided edge 7, and the normals to
its neighbors. We assume a sharp corner, such as the cusp of the airfoil in Example 5.3, to be present if
7 - fineigh < 0. One sided approximation of the local curvature is used in this case.

solid

/\ boundary

w
Q i

Fig. 3. Curvature boundary conditions for the two point Gauss-Legendre integration rule. Velocity at points x; and x; is orthogonal
to the physical normals ]V(x]) and N(x;).

30y

Fig. 4. Construction of vectors N at boundary integration points x;, i = 1,2,...,5 for p = 4.
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We present three algorithms for imposing (7) numerically. We show in Section 5 that Algorithm I is less
accurate than the other two. Algorithms II and III result in almost identical solutions. We prefer Algorithm
II for its simplicity and use it in our numerical experiments in Section 5.

Before proceeding, we need to describe the notation used. Here, 7i = (n;,n,) and 7 are unit normal and
tangential vectors to the computational boundary, N = (N1,N,) and T to the physical boundary, respec-
tively. Subscripts refer to projections on the respective vector. Superscripts are reserved to differentiate be-
tween different states at the same point: b denotes a boundary value, i.e., the value used to compute the
numerical flux F,, in (4), the superscript g refers to a ghost cell value, and variables without a superscript
denote interior values. According to this notation, v is the projection of ghost state velocity vector #* onto

—

n.

Algorithm I. This algorithm uses interior solution values to compute the numerical flux on the solid
boundary in (4). This eliminates the need to solve the Riemann problem on GQW Condition (7) is enforced
by setting the projection of the velocity vector onto N to zero at each 1ntegrat10n point. This is done locally
in the boundary solver without modifying the solution inside €;.

Let ¥ = (u,v) be the Ve1001ty at integration point x;, i=1,2,...,ng, on 69 Computing the tangential
boundary velocity vT =° . T relative to the physical geometry as
vgsz:uszle, (8)

setting the normal boundary velocity 1% =% - N to zero,
=0 )

and rotating (8, 9) back into (u,v) space, we force the boundary state velocity ©° at x; to satisfy (7). Using the
interior values of density and pressure for the other components of U}’(x[) results in the solution vector at
x;,i=12,...,ng, on aQ}”

p°=p,

u® = (uN, — vN| )N,

v® = —(uN, — vN,)Ny,

P> =P. (10)

Then, (10) is used to compute the numerical flux in (4) as
F(UY) = (p°8° - i, p°u®° - i, p°0° - 77, B° - (E® + p")). (11)

Algorithm II. This algorithm seeks to improve on Algorithm I by constructing ghost states at integration
points on 02} and solving the Riemann problem there. The ghost state values are extrapolated from the
interior solutlon with the aim for U to satisfy (7) Although the velocity vectors obtained by Algorlthms
I and II are similar, the pressure P° and density p® resulting from the Riemann solver correspond to R =0,
not to the original velocity vector, and, thus, are more accurate.

We proceed as follows. A ghost state Ug(x,) is created at each boundary integration point x;
i=1,2,...,ng. The velocity vector ¥ = (u,v) 1s reflected to the ghost state with respect to T (Fig. 5).
The normal and tangential components relative to the physical geometry at the ghost state are given
by

Ui(Xz‘) = —on(X), U%"(Xi) = vr(x;), (12)

while the density and pressure are copied exactly from the interior values at the same point. Rotating (12)
back into (u,v) space, we obtain the ghost state vector as
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5
ﬁ I

Nl

Fig. 5. Velocity vector reflection. Algorithm II.

pE = p,

u® = u[(N,)* — (N1)*] = 2N\ Nav,

Ug = U[(Nl)z — (Nz)z} — 2N1N2u,

P =P (13)

Finally, the Riemann problem riemann(U, U#;7) is solved. Due to the identical pressure and density in the
ghost and interior states, the exact solution of the Riemann problem consists of either two shocks or two
rarefaction waves [17] with the normal velocity at the interface given by
b
& = Yo + ). (14
The tangential velocity v? equals to v, or vf depending on the sign of #-7. As a result, * is not exactly
orthogonal to N. The error depends on the velocity vector and the curvature of the boundary. In all our
experiments, even on very coarse meshes, it was small and did not noticeably affect quality of the solution.
However, by slightly modifying the mapping of the velocity to the ghost state we can force th.’ to satisfy (7)
exactly.

Algorithm III. This algorithm is a modification of Algorithm II, where the no flow through the physical
boundary is satisfied exactly. The velocity vector #° resulting from the solution of the Riemann problem
on 0Q} can be forced to satisfy (7) by requiring v¥ = v, and reflecting v, with respect to 7 (Fig. 6)

N —
N n
D -
o | T
A :
T
I -
v
Si
N
vh

Fig. 6. Velocity vector reflection. Algorithm III.
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08 = v, — 2(vy — sgn(vy)|vy| tana), (15)

—

where o is the angle between N and 7 and the two normals point to the same side of 0Q7, ie., (N -7) > 0.
After rotating (15) back into (u,v) space, the ghost state is computed as

pE = p,

ut = v¥ny + vin,, (16)
v& = viny — viny,

PE=P. (17)

Again, the Riemann problem riemann(U, U%; #) is solved at x;, i=1,2,...,ng.

Although the velocity vector resulting from Algorithm III should be more accurate than one obtained
with Algorithm II, the algorithms performed nearly identically in our experiments. We should note, how-
ever, that condition (7) is not exact by itself due to the approximate nature of N for a general non-circular
geometry. We preferred Algorithm II for its simplicity. It was used in numerical experiments in Section 5
unless otherwise indicated. The comparative performance of the three algorithms is discussed in Example
5.1.

5. Numerical examples

In order to demonstrate the new method, we present several examples. The results were obtained by
using a time-dependent DG code and integrating until a steady state was reached. Plotting was done using
data from inside of elements; no smoothing was applied. The discontinuous nature of the numerical solu-
tion will in this case result in a broken pattern of isolines when jumps in the solution values across inter-
element boundaries are large.

5.1. Supersonic vortex

We consider an isentropic supersonic flow between two concentric circular arcs of radii ;=1 and
ro = 1.384 in the first quadrant, a test problem found in [1]. The exact density in terms of radius r is given

by
1 ry 2\ (/671
p:pi<1+VTMi2<l—(7> )) . (18)

The velocity and pressure are given by

aMi — p_ P (19)

)
r v

16l =

where ¢; is the speed of sound on the inner circle. The Mach number on the inner circle M; is set to 2.25 and
the density p; to one.

We solve the problem on a sequence of unstructured triangular meshes containing 140, 620 and 2406
elements (Fig. 7). All computations were performed until solution coefficients reached a steady state,
defined as the residual

Np

4
oD (=) (20)

J=1 k=1 i=1

Ni
R =
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Table 2
L? errors in density and rates of convergence r for supersonic vortex
N b4
p=1 p=2 p=3 p=4
Error r Error r Error r Error r

Exact boundary conditions

140 4.04E — 03 - 1.89E — 04 - 6.75E — 06 - 5.34E — 07 -

620 1.19E — 03 1.76 2.72E — 05 2.80 6.21E — 07 3.44 3.65E — 08 3.87
2406 2.95E — 04 2.01 3.30E — 06 3.04 3.97E — 08 3.97 9.12E — 10 5.32
Algorithm I

140 5.30E — 03 - 2.42E — 04 - 7.36E — 06 - 5.69E — 07 -

620 1.50E — 03 1.82 4.00E — 05 2.60 6.48E — 07 3.51 3.71E — 08 3.94
2406 3.53E - 04 2.09 4.61E — 06 3.12 4.17E — 08 3.96 9.72E — 10 5.25
Algorithm 11

140 4.65E — 03 - 2.26E — 04 - 7.32E — 06 - 5.70E — 07 -

620 1.37E — 03 1.76 3.66E — 05 2.63 6.30E — 07 3.54 3.69E — 08 3.95
2406 3.29E — 04 2.06 4.11E — 06 3.15 4.05E — 08 3.96 9.52E — 10 5.28
Algorithm ITT

140 4.64E — 03 - 2.26E — 04 - 7.34E — 06 - 5.70E — 07 —

620 1.37E — 03 1.76 3.66E — 05 2.63 6.30E — 07 3.54 3.70E — 08 3.95
2406 3.29E — 04 2.06 4.11E — 06 3.15 4.06E — 08 3.96 9.52E — 10 5.28
Reflecting boundary conditions

140 3.32E - 02 - 4.32E — 02 - 4.75E — 02 - 5.05E — 02 -

620 1.05E — 02 1.66 1.35E - 02 1.68 1.72E — 02 1.47 2.14E — 02 1.24
2406 4.39E — 03 1.26 5.43E — 03 1.31 6.43E — 03 1.42 8.23E — 03 1.38

I is slightly less accurate. The convergence rates are the same as with the exact boundary conditions. The
rates of convergence do not perfectly correspond to the number of elements due to the fact that the meshes
used are not structured and not nested. The errors with the RBC are significantly larger. Moreover, a re-
duced 1*? convergence rate is observed under /-refinement for all p, while p-refinement results in decreased
accuracy.

5.2. Flow around a circular cylinder

We consider a subsonic flow at Mach number M, = 0.38 on four O-grid meshes having 16 x 4, 32 x 8,
64 x 16 and 128 x 32 points (Fig. 8). The first number refers to the number of points in the circular direc-
tion, the second describes the number of concentric circles in the mesh. The radius of the cylinder is
ro = 0.5, the domain is bounded by r3;, = 20, the radii of concentric circles for 128 x 32 mesh are set up
as in [9]

= 1+2—”jzk 1=1,2,...,32
Jj—= "o o ) J=L4.. ) (21)

with o = 1.1648336. The coarser meshes are obtained by successively unrefining the finest mesh. All plots
for this example are shown in the [—2,2]x [—-2,2] square. First, we solve the problem on the sequence of
meshes with p = 1 and plot Mach isolines in Fig. 9 with AM = 0.038. The plots visually compare well with
those obtained by Bassi and Rebay [5] and are significantly more accurate than ones obtained with the RBC
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Fig. 8. 16 x4, 32x 8, 64 x 16, and 128 x 32 meshes around a circular cylinder.

(Section 3). The solution obtained on the finest mesh is symmetric and does not have a visible wake. Next,
we perform p-refinement on the coarsest mesh and plot Mach isolines with the same AM for p =1,2,3,4 in
Fig. 10. The quality of the solution clearly improves as p increases. The solution corresponding to p =4 is
similar to one obtained on the finest mesh with p = 1. In all our experiments, the velocity vectors near the
surface followed the contour of the cylinder. As an illustration, we plot in Fig. 11 the velocity profile and a
zoom near the rear stagnation point for the p = 2 solution on the 32 x 8 mesh. The plots reveal a smooth
flow that “wets” the surface.
To quantify our findings, we measure L? errors in entropy eq, defined as

P o\’
ent — 55 - - la 22

where P, and p, are pressure and density of the free stream, respectively. The results with /- and p-refine-
ment are reported in Table 3. Numbers compare well with [5]. Further, we present two aerodynamic quan-
tities: the pressure coefficient C,

P—-P,

=—2>_ (23)
0.5p,0 15 I°

p






grid. Circular cylinder, p = 1,2,3,4 from left to right and from top to bottom,




L. Krivodonova, M. Berger | Journal of Computational Physics 211 (2006) 492-512

507
Table 3
12 errors in entropy and convergence rates for the circular cylinder
N P
p=1 p=2 p=3
€ent r €ent r €ent r
16 x4 5.12E — 02 - 6.87E — 03 - 1.00E — 03 -
32x8 9.28E — 03 2.46 4.37E — 04 3.97 5.41E - 05 4.21
64 x 16 1.42E — 03 2.71 3.75E — 05 3.54 3.55E — 06 393
128 x 32 2.09E — 04 2.76 4.05E — 06 3.21 2.43E — 07 3.87
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Fig. 12. Pressure coefficient on the surface under /-refinement with p = 1 (left) and p-refinement on the coarsest mesh (right). Circular

cylinder, (p + 1) points per surface edge plotted, N is the number of elements in a mesh.
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Fig. 13. Total pressure loss coefficient on the surface: /-refinement with p =1 (left) and p-refinement on the coarsest mesh (right).
Circular cylinder, (p + 1) points per surface edge plotted, N is the number of elements in a mesh.

p-refinement, we notice that the solution on the finest mesh with p =1 and the solution on the coarsest

mesh with p = 4 are very close quantitatively and qualitatively. However, the number of degrees of freedom
increases significantly faster under A-refinement (Fig. 14). As a result, the solution with p =4 on 16 x4
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Fig. 14. L? error in total pressure on the surface as a function of degrees of freedom, A- and p-refinement, circular cylinder.
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Fig. 15. Total mass loss as a function of degrees of freedom, /- and p-refinement, circular cylinder.

mesh required 40 times less CPU time than the linear approximation on the finest mesh. The advantage of
the higher-order method is self-evident here.

We performed numerical experiments with flow around elliptic cylinders that produced qualitatively sim-
ilar results. They are not reported here to save space.

5.3. Flow around NACAQ0I2 airfoil

In contrast with the previous examples, where the exact boundary was described by circles, an error is
introduced by the numerical approximation of the normals to the physical boundary for a NACAO0012. It
does not appear to affect the accuracy much. The only change that was made for this example was to make
sure that one mesh point was located exactly at the end point of the airfoil. As already described in Section
4, the curvature of the two boundary elements containing the end point was computed using one-sided
approximation, i.c., involving only one adjacent boundary edge lying on the same (upper or lower) half
of the airfoil. A more sophisticated reconstruction of the geometry might be necessary for more complex
cases; see for example [16].
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The surface of the NACAO0012 airfoil is given by
y = +5¢(0.2969/x — 0.126x — 0.3516x* 4- 0.2843x> — 0.1015x%), (25)

with 7 = 0.12. We solve a subcritical problem with p =2 on the 2960 element unstructured mesh with 102
elements on the surface shown in Fig. 16. The mesh is not symmetric with respect to the chord of the airfoil.
The free stream Mach number is M, = 0.63 and the angle of attack o = 2°. The calculations were started
with the uniform free stream and stopped when residuals reached the machine precision. The Mach and
pressure coefficient isolines are shown in Fig. 17 with AM = 0.05 and AC, = 0.1, the wall distributions
of these quantities are presented in Fig. 18. The isolines around the trailing edge are smooth, without a
cusp, implying insignificant spurious entropy production. The maximum entropy error is 1.3 x 107>, the
entropy isolines are shown in Fig. 19. The total mass loss is 1.8 x 1072 in absolute value. Next, we compute
the lift and drag coefficients as

Cp coso  sino C,
= . , (26)
CL —sina  coso C,

Fig. 16. Mesh around NACAO0012.

Fig. 17. Mach number (left) and —C, (right) isolines, NACA0012, M., = 0.63, « =2°, AM = 0.05, AC, =0.1.
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Fig. 18. Mach number (left) and —C,, (right) on the surface of NACA0012, M, = 0.63, o = 2°.
Fig. 19. Entropy isolines, M., = 0.63, oo = 2°.
where
_ fbody Pnl ds _ fbody Pl’lz ds (27)
- S 2.0 y = S 2.0
and L is the chord length. The computed aerodynamic coefficients C;, = 0.333 and Cp = 0.00015 compare

well with results in the literature [9].

Finally, we solve a transonic problem with the free stream Mach number 0.85 and the angle of attack 1°.

The lift coefficient for this problem is known to be very sensitive and difficult to compute accurately. We
computed the problem on the coarse grid containing 102 elements on the surface of the airfoil (Fig. 16).
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Fig. 20. Pressure coefficient —C,, NACA0012 airfoil, M., = 0.85, « = 1°, 102 points on the surface of the airfoil.
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The pressure coefficient on the surface is shown in Fig. 20. The lift and drag coefficients computed with a
scalar limiter are Cp, = 0.373 and Cp = 0.0565. They are similar to the results reported in [9].

6. Discussion

We proposed a new method for imposing solid wall boundary conditions for curved geometries. The
method aims to approximate the flow around the physical rather than computational domain, thus elimi-
nating large errors in the boundary layer. Ghost states are created at integration points on the solid bound-
aries; the solution values at these points are set so that the velocity vector resulting from solving the
Riemann problem is tangent to the physical boundary. The curvature of the physical geometry is obtained
directly from the geometric description of the body, if it is available, or approximated locally on each ele-
ment using information from neighboring elements. We show on several examples that solutions obtained
with the curvature boundary conditions converge under /4- and p-refinement. The rate of convergence for
the orders of approximation tested is O(#” © !). Although the method is not conservative, the no flow
through the wall condition is achieved in the limit, with the total flux through the solid boundary being
small and converging to zero under refinement. The method does not depend on the order of approxima-
tion and as such can be very useful with p-refinement. It can be easily incorporated into an existing code
since no special treatment of boundary elements is required and no construction of ghost cells is necessary.

In future work, we will apply this method to more complicated geometries and more complicated flow
fields, for example time-dependent problems involving shocks. With these improved boundary conditions,
p-refinement is now a more practical option for practical problems. Combining p- and /-refinement would
be especially beneficial, and we believe is a fruitful area to investigate. Finally, extension to three-dimen-
sional problems is an important next step.
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